Measuring the Electron EDM Using Ytterbium Fluoride (YbF) Molecules

mesur moment deupol trydanol yr electron

Joe Smallman

The electron electric dipole moment (EDM)

• Displacement of centre of charge from centre of mass

Electron EDM estimates

$|d_e^{\text{thallium}}| < 1.6 \times 10^{-27} \text{e.cm}$

How small is that?

- Assume:
 - $d_e \approx 10^{-27} e.cm = 2 \times 10^{-19} e.a_0 = 5 \times 10^{-19} D$
 - $E \approx 1 GV/cm$

EDM interaction:

$$-\vec{d}_e \cdot \vec{E} \approx 0.25 \, mHz$$

- $\equiv -\mu_B \cdot B$ for $\approx 17 fT$ magnetic field • $\approx 10^{-10} cm^{-1}$
- $\bullet \approx 10^{-18} eV$

How atoms and molecules can help

Amplify the electron EDM interaction!

$$\vec{E}_{eff} = E_{eff} \max \eta(E_{app}) \hat{z}$$
structure polarisation
dependent factor
factor $\sim Z^3$ $\langle \hat{n} \cdot \hat{z} \rangle$

YbF electric field enhancement

- $\vec{E}_{eff} = 14.5 \text{ GV/cm}$ for $\vec{E}_{app} = 10 \text{ kV/cm}$
- Enhancement of $10^{6}!$

Needs 'only' nano-Gauss level of B-field control

YbF energy levels

EDM measurement

Measuring the electron EDM

Interference fringes

Lots of other parameter modulations

• E-field direction <----

demonstrated in last slide

- B-field direction
- B-field magnitude
- rf pulse frequency (independently)
- rf pulse amplitude (independently)
- rf pulse phase difference
- laser frequency

see Hudson et al. Stochastic multi-channel lock-in detection arXiv:1307.4280

Result

• 2011 dataset: 6194 measurements (6min/measurement)

J J Hudson et al. *Nature* **473** 493-496 (2011) D M Kara etal. *New. J. Phys.* **14** 103051 (2012)

Upgrades since 2011

- 3rd layer of magnetic shielding
 - Less magnetic field noise
- Longer inner magnetic shield
 - Reduce end effects
- Separate rf transmission line from HV plates
 - Reduce end effects, higher applied E-field, less leakage

- Shorten rf pulses
 - Reduce systematics associated with rf detuning

Future upgrades

- Buffer gas source
 - » See James Bumby's poster

• 3 x longer interaction time

• 10 x more molecules

Future upgrades

Detect molecules using N=1

» Talk to Isabel Rabey

Imperial College

London

• 30 x more photons per shot

YbF fountain

Tarbutt et al. New J. Phys. 15 053034 (2013)

The YbF eEDM team

Jack Mike Jony Ed Devlin Tarbutt Hudson Hinds Joe Tarbutt Isabel Ben Smallman Rabey Sauer

EDM measurement

• Measure the EDM induced splitting

